College of Engineering

Department of Civil Engineering

CE 528 Water Resources Systems Analysis			
Credit and Contact hours	3/3 (Lectures), 0 (Tutorials), 0 (Laboratory)		
Required, or Elective	Required for a MSCE degree		
Course Description	Introduction to system engineering optimization by calculus, linear and nonlinear programming, dynamic programming, simulated annealing, chance constraints modeling, and decision analysis. Applications to water resources problems.		
Prerequisites or Co-requisites	None		
Course Learning	Students completing this course successfully will be able to		
Outcomes	Course Learning Outcomes	Related Program Outcomes	
	CLO1: Recognize and explain the main concepts of water resources systems.	K1	
	CLO2: Recognize the different types of methodologies to solve water resources problems.	K1	
	CLO3: Select and apply appropriate methods and techniques for analyzing water resources systems problems	S1	
	CLO4 : Evaluate the performance of existing water resources systems in real-life projects.	C2	
Student Outcomes related to this Course	K1 . Recognize advanced engineering knowledge, concepts and techniques to identify, interpret and analyze complex and real-life engineering problems.		
	S1 . Provide solution for complex and real-life engineering problems through critical thinking and using modern engineering tools and identify its impact on social and ethical issues.		
	C2. Design novel advanced Civil Engineering systems and evaluate its performance and effectiveness for engineering practice and its impact on society.		

Topics Covered	List of Topics	Related CLOs
	1. Introduction to water resources systems analysis.	CLO1
	2. Water Distribution Operation Modeling.	CLO2
	3. Groundwater Management Modeling.	CLO2
	4. Storm Sewer Design Modeling.	CLO2
	5. Detention/Retention Basin Design.	CLO3
	6. Chance-Constrained Models.	CLO3
	7. Water Quality Management Models for Rivers and Estuaries.	CLO3
	8. Infiltration Basin Design.	CLO3
	9. Water Reuse Planning Models.	CLO3
	10. Reservoir Operation Modeling.	CLO3
	11. Soil Aquifer Treatment (SAT) Systems.	CLO4
	12. Regional Water Supply Planning Models.	CLO4
	13. Case study: Saudi Arabia ,and project presentation.	CLO4
Textbook(s) and Other Required Material	 Mays L.W. and Y.K. Tung, Hydrosystems Engineering and Mana, McGraw-Hill, 1992. 	gement,
Grading System	Assignments 5%	
	Project Work 35 %	
	Midterm Exam 20%	
	Final Exam40%	
Instructors	Dr. Faisal Mohammed A Alfaisal/ Dr. Ali O. Al-alnahit	
	E-mail: falfaisal@ksu.edu.sa Office 2A93	
Date of Review	February, 2021	